Deployment and Principles of LLaVa
Deployment and Principles of LLaVa
Reference
Principle and Deployment
A video concerning the principles of LLaVa
Good to know
Project structure and config.json
settings
Download the llava framework, download the weight
and vision encoder
respectively
1
2
3
4
5
## Test command
python -m llava.serve.cli --model-path liuhaotian/llava-v1.5-7b --image-file "https://llava-vl.github.io/static/images/view.jpg" --load-4bit
# safe on < 8 GB VRA
# Using 4060(8G), so using --load-4bit to save VRAM is needed
Graphic Interface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
## Controller
python -m llava.serve.controller --host 0.0.0.0 --port 10000
## Worker
python -m llava.serve.model_worker \
--host 0.0.0.0 \
--controller http://localhost:10000 \
--port 40000 \
--worker http://localhost:40000 \
--model-path liuhaotian/llava-v1.5-7b \
--load-4bit
## Gradio web server
python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
Outcome
When bug appears
Could not parse server response: SyntaxError: Unexpected token ‘I’, “Internal S”… is not valid JSON
Just UPDATE: pip install gradio -U
This post is licensed under CC BY 4.0 by the author.